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Abstract 

Being easy to learn and well suited for a self-
contained desktop laboratory setup, many casual pro-
grammers prefer to use the National Instruments Lab-
VIEW environment to develop their logic. An ActiveX 
interface is presented that allows integration into a 
plant-wide distributed environment based on the Ex-
perimental Physics and Industrial Control System 
(EPICS). This paper discusses the design decisions and 
provides performance information, especially consider-
ing requirements for the Spallation Neutron Source 
(SNS) diagnostics system. 

1 INTRODUCTION 
EPICS is a highly configurable toolset for building 

distributed control systems that scale to accommodate 
large projects[1]. It has C and C++ interfaces for the 
integration of new hardware and software[2], full 
source code is available.  

While this provides the best performance, highest 
flexibility and is easily understood by experienced pro-
grammers, the initial EPICS setup does already require 
a network connection and two computers: the real time 
target and a Unix or Win32 (Windows NT, 9x, 2000) 
host. Some application engineers who are unfamiliar 
with the multifaceted EPICS toolset prefer to start with 
a purely visual environment on a single PC. LabVIEW 
is a tool where the engineer most familiar with the ap-
plication task can quickly start the implementation. 
This paper presents ways of integrating LabVIEW into 
the distributed EPICS environment. 

2 EPICS CHANNEL ACCESS 
EPICS communicates via the ChannelAccess (CA) 

network protocol. Front-end input/output controllers 
(IOCs) run a CA server, presenting values as well as 
time stamps, limits, units, alarm status and other attrib-
utes. CA clients locate the server based on channel 
names. They establish a connection and subscribe to 
changes in value or connection status. Management of 
the connection status as well as high throughput are key 
features of CA [3,4]. 

CA server and client libraries are available to C/C++ 
software on Unix and Win32. Since the CA libraries 
need to monitor network connections for incoming re-
quests and data, the user program has to implement 
periodic calls into the CA libraries. The CA server 

monitors a dedicated UDP port for search requests. It is 
therefore suggested to run only one CA server per 
computer since an additional server would use a non-
standard UDP port, unknown to most CA clients. 

3 LABVIEW EXTENSION OPTIONS 
LabVIEW can call Win32 DLLs, communicate via 

ActiveX and DDE or perform low-level UDP/TCP 
network calls. Using the latter would result in a re-write 
of the CA libraries. Since LabVIEW code is unlikely to 
compete with a C/C++ implementation, this was not 
attempted. Using the CA libraries as DLLs is problem-
atic because LabVIEW would have to initiate the peri-
odic network processing. 

DDE has been used for the CA client library: A sepa-
rate program implemented the periodic processing of 
CA network connections, presenting the data to Math-
Works MATLAB via DDE[2]. LabVIEW can use this 
DDE interface, but DDE is deprecated with the advent 
of newer technologies, namely Win32 COM (Compo-
nent Object Model) and ActiveX[5]. 

4 ACTIVEX CA SUPPORT 
Two ActiveX Automation Server programs interface 

to the CA server respectively client library. Every 
COM-aware Win32 program can create an ‘EpicsCA-
Server.ProcessVariable’ or ‘EpicsCAClient.Process-
Variable’. COM marshals requests from different proc-
esses into a single thread, avoiding threading problems 
in the CA library. More than one program can transpar-
ently use the same instance of the CA server or client. 
LabVIEW, MATLAB, Microsoft Visual Basic and 
Visual C++ offer interactive browsing of COM objects, 
modification of published properties (‘name’, ‘units’, 
etc.), invocation of methods (‘setValue’, …) and reac-
tion to events (‘Changed’, ‘NewValue’). 

Several LabVIEW VIs shield the user from the un-
derlying COM calls. Serving a number is reduced to 
one initial call to a “Create” VI that takes the name of 
the new process variable, followed by calls to a “Set” 
VI whenever the value changes, see Fig. 1. In this ex-
ample LabVIEW serves a read-only process variable to 
EPICS clients. Fig. 2 shows a more realistic setup as 
suitable for a setpoint, a variable that is to be changed 
both locally on the LabVIEW front panel and remotely 
via a CA client. After creating a process variable for 
the setpoint, additional informational parameters are 



 
configured and then the value of a user interface knob 
on the front panel is served. In addition, LabVIEW 
polls for input from CA and modifies the value of the 
knob in response.  

Figure 1: Serving a random number from LabVIEW 
 
While other languages can asynchronously react to 

ActiveX events, invoking callbacks immediately after 
the event arrives, LabVIEW offers only a polling or 
waiting mechanism to check for events. 

5 PERFORMANCE 
The COM call to update the value of one process 

variable requires 0.14 milliseconds for LabVIEW on a 
900 MHz Pentium PC, increasing with the data size. 
Times for Visual Basic, a compiled language, are 
slightly better (Table 1). Repeated measurements 
showed variations of up to 15% on a Windows NT 
4.0 PC because neither LabVIEW nor Win32 are de-
terministic. The CPU load was at 100% in these tests, 
leaving no time for the CA server to actually respond to 
client requests. In a realistic setup delays will be 
needed to allow for CA client interaction. 

The measured times reflect the overhead of COM 
calls. They also apply when the CA server sends an 
event to LabVIEW. Every time an operator changes a 
setpoint on an EPICS operator screen, LabVIEW has to 
receive this value (1 COM call), maybe constrict it to 

the allowed operating range and post the result to the 
server (1 COM call), resulting in an expected overhead 
of 0.28 ms per value. 

 
Table 1: Times for updating data on the ActiveX CA 

server 
Data Served LabVIEW Visual Basic 
Double 0.14 ms 0.08 ms 
Double[100] 0.20 ms 0.16 ms 
Double[500] 0.45 ms 0.40 ms 
Double[1000] 0.75 ms 0.77 ms 
 
Scaled linearly, one could serve around 700 values at 

10 Hz. In reality, different timings result depending on 
the implementation. As an example, handling 10 set-
point variables in a loop required 7 ms, 100 variables 
required 70 ms. An alternative parallel implementation 
handled 10 setpoints in only 0.50 ms. While faster than 
the loop, this is impractical for many setpoints because 
the resulting LabVIEW diagram is indecipherable. 

The Low Energy Demonstration Accelerator 
(LEDA) at the Los Alamos Neutron Science Center has 
several operational LabVIEW systems. One handles 10 
power supplies for 52 magnets, 8 ion pumps, 3 ion 
gauges, 3 beam line valves plus 40 thermocouples. The 
readbacks and status values result in a channel count of 
about 525, there are ~175 setpoints for outputs and 
interlock limits. LabVIEW polls for user input between 
handling the hardware, reaction times are 1-2 seconds. 
In another LEDA system LabVIEW controls 20 power 
supplies via GPIB, resulting in ~140 channels. Lab-
VIEW has to generate the GPIB commands and then 
wait for a response. Though the sequence of sending 
and receiving GPIB messages has been optimized, the 
reaction to user input is 3s or more, still acceptable for 
the specific system. 

 
 

Figure 2: Serving a setpoint from the LabVIEW front panel, responding to CA input. 
 
 



 

6 SNS DIAGNOSTICS ISSUES 
SNS diagnostics systems like the beam position 

monitors (BPM) require handling of up to 100 setpoints 
while sending the measured beam parameters at 10 Hz. 
We assume four values. Since the beam is pulsed at 
60 Hz, this higher update rate is desirable at certain 
times. All data is to be time-stamped according to in-
formation sent on the real-time data link (RTDL). Oc-
casionally, measurements are to be taken in response to 
an event link signal. The system shall respond to user 
input within 1s. On demand, array information about a 
full beam pulse of 2500 samples shall be provided, but 
since this is allowed to cause delays we will ignore it in 
the following discussion. 

With LabVIEW updating four values at 60 Hz and 
handling 100 setpoints, at least 0.9s of each second are 
left for processing the diagnostics hardware. Limited by 
polled operation, LabVIEW cannot asynchronously 
respond to event-link signals or retrieve the current 
time stamp in a deterministic manner. A solution is to 
monitor the event link and RTDL in hardware, time-
stamp the data in hardware and have LabVIEW only 
read the result. The ActiveX CA Server was recently 
extended so that LabVIEW can pass these time-
stamped values. 

Since the planned diagnostics hardware is for the 
PCI bus and LabVIEW cannot directly access it, a 
Win32 device driver is required, written in C or C++. 
Its implementation might be simplified by basing it on 
commercially available real-time extension software for 
Win32. 

Past experience has shown problems related to set-
points. In a conventional EPICS IOC, they are simply 
named and response to user input is instantaneous. A 
LabVIEW program has to check for user input and 
react to it. When this is done in sequence with the re-
maining program tasks, delays of several seconds have 
been observed. While LabVIEW does offer multi-
threading for handling this in parallel, the arising 
threading issues require advanced LabVIEW training. 

Another proposal for the SNS diagnostics is to keep 
the diagnostics systems minimal, resulting in one PC 
per BPM running LabVIEW, and use an ordinary 
EPICS IOC to collect and correlate data across BPMs 
to provide consistent information for beam orbits. 

CONCLUSION 
We presented a way of integrating LabVIEW and 

other Win32 programs (MATLAB, Visual Basic) into a 

distributed EPICS environment. The ActiveX interface 
to CA is easy to learn. It is ideal for small LabVIEW 
systems, especially temporary setups like beam-line 
experiments. It is used successfully at LEDA for opera-
tional systems with several hundred process variables. 

The current performance measurements together 
with recent enhancements suggested that LabVIEW, 
integrated via ActiveX, could meet SNS requirements, 
although this is neither a pure nor a simple LabVIEW 
implementation. 

A new system like the SNS BPMs naturally involves 
both new hardware and software. For an EPICS IOC, 
the required BPM driver, a C program, would handle 
the data from several BPMs, using the same event and 
RTDL support as other SNS IOCs. In a LabVIEW im-
plementation, the processing of event and time stamp 
data has to be implemented in hardware or the C/C++ 
driver program, which is needed so that LabVIEW can 
access the hardware on the PCI bus. In addition, an 
EPICS IOC could still be needed to correlate data 
across BPMs. 

It must be noted that the performance of LabVIEW 
systems is highly dependent on the specific implemen-
tation; we exemplified this with regard to setpoints and 
reaction times.  And while EPICS IOCs have a known, 
reasonable degradation with network load, where the 
system will stop responding to network requests but 
still perform local control, this is not possible with a 
LabVIEW/ActiveX approach because each COM call 
is a round-trip request. When the ActiveX CA server 
suffers from heavy network load, the LabVIEW pro-
gram will degrade accordingly. 
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